Lake Erie PIT Expansion Noise Study

Prepared for:

Stephen Taylor McLucas & Associates P.O. Box 5352 Lacey, WA 98509

Prepared by:

ROBERT WOO – Principal Acoustical Consultant, INCE ANGELICA NGUYEN – Associate Acoustical Consultant

ACOUSTICS GROUP, INC.

Consultants in Acoustics, Noise & Vibration (877) 595-9988

1

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	2
NOISE	2
NOISE STANDARDS	3
NOISE SENSITIVE RECEIVERS	4
NOISE ANALYSIS	
Existing Operations	5
Future Operations	5
IMPACT ASSESSMENT	6
NOISE CONTROL RECOMMENDATIONS	7
CONCLUSION	9
REFERENCES	10
APPENDIX	11
Figures Figure 1. Location of the Lake Erie PIT Expansion Site and Vicinity Map	
Figure 2. Typical A-weighted Noise Levels	3
Tables	
Table 1. State of Washington Exterior Noise Standards	
Table 2. Summary of Noise Sensitive Receiver Location	
Table 3. Acoustical Source Data	
Table 4. Existing and Future Mining Operations Noise Levels	
Table 5. Summary of Future Operations Noise Impact Assessment	

EXECUTIVE SUMMARY

Acoustics Group, Inc., (AGI) was retained to conduct a noise study of the existing and future Lake Erie PIT Expansion operations located at 13540 Rosario Rd in Anacortes, WA. AGI has reviewed the State of Washington Noise Standards, analyzed the noise levels from future noise sources around the site, assessed the impact of the future noise to determine compliance with the Exterior Noise Standards, and recommended noise control measures.

Lake Erie PIT currently performs mining operations at their site. The existing operation involves mining equipment and trucking operations, loading/unloading, and employee parking. Current Lake Erie PIT operations are at Parcels P19108, P19162, and P19165. Future operations will involve expansion into Parcels P19155, P19158, P90028, P19161, and P19164. The future Lake Erie PIT Expansion operations would produce noise levels as high as 60.1, 63.5, 55.5, 52.5, 51.7, 55.7, 57.7, 69.8, 65.8, 64.3, 53.8, and 43.8 at noise sensitive receivers R1 through R12, respectively. Future operations would exceed the State of Washington's residential noise standards at noise sensitive receivers R1, R2, R8, R9, and R10. Noise control recommendations have been identified to reduce operations noise below the State of Washington's Noise Standards.

This report has been organized into multiple sections for ease of reference. Section 1 introduces the Project and provides a general discussion on the Project Components. Section 2 discusses Noise Fundamentals, and Section 3 presents the Noise Standards. Section 4 discusses the Noise Analysis and Section 5 discusses the Impact Assessment. Section 6 presents the Noise Control Measures. Section 7 discusses the Conclusion.

INTRODUCTION

Lake Erie PIT Expansion proposes continued and expanded mining operations at their facility at 13540 Rosario Rd in Anacortes, WA. Current Lake Erie PIT operations are at Parcels P19108, P19162, and P19165. Future operations will involve Parcels P19155, P19158, P90028, P19161, and P19164. Lake Erie PIT Expansion will operate from 7:30 AM to 5:30 PM Monday through Saturday. Refer to Figure 1 for the general location of the Lake Erie PIT Expansion Site and Vicinity Map. Land uses immediately surrounding the site are residential. The main noise concern is facility operations affecting neighboring properties. Noise sensitive receivers R1 through R12 were identified as the nearest residential receivers to the project site. Refer to the Appendix for the Project Drawings.

Figure 1. Location of the Lake Erie PIT Expansion Site and Vicinity Map

NOISE

The magnitude by which noise affects its surrounding environment is measured on a logarithmic scale in decibels (dB). Because the human ear is limited to hearing a specific range of frequencies, the A-weighted filter system is used to form relevant results. A-weighted sound levels are represented as dBA. Figure 2 shows typical A-weighted exterior and interior noise levels that occur in human environments.

Several noise metrics have been developed to evaluate noise. L_{eq} is the energy average noise level and corresponds to a steady-state sound level that has the same acoustical energy as the sum of all the time varying noise events. L_{max} is the maximum noise level measured during a sampling period, and L_{xx} are the statistical noise levels that are exceeded xx-% of the time of the measurement. L_{50} is the average noise level that is exceeded 50% of the time, 30 minutes in a 60 minute period.

Common Outdoor	Noise Level	Comment to do on A sale taken
Activities	dBA	Common Indoor Activities
	110	Rock Band
Jet Fly-over at 300 m (1000 ft)		
	100	
Gas Lawn Mower at 1 m (3 ft)		1
	90	
Diesel Truck at 15 m (50 ft),		Food Blender at 1 m (3 ft)
at 80 km/hr (50 mph)	80	Garbage Disposal at 1 m (3 ft)
Noisy Urban Area, Daytime		
Gas Lawn Mower at 30 m (100 ft)	70	Vacuum Cleaner at 3 m (10 ft)
Commercial Area		Normal Speech at 1 m (3 ft)
Heavy Traffic at 90 m (300 ft)	60	
		Large Business Office
Quiet Urban Daytime	50	Dishwasher Next Room
Quiet Urban Nighttime	40	Theater, Large Conference Room
Quiet Suburban Nighttime		(Background)
	30	Library
Quiet Rural Nighttime		Bedroom at Night, Concert Hall
	20	(Background)
		Broadcast/Recording Studio
	10	
Lowest Threshold of Human	0	Lowest Threshold of Human
Hearing		Hearing

Source: TNS, 1998

Figure 2. Typical A-weighted Noise Levels

NOISE STANDARDS

The City of Anacortes Municipal Code has adopted the State of Washington regulations for the purpose of protecting citizens from potential hearing damage and from various other adverse physiological, psychological, and social effects associated with noise. The State of Washington Administrative Code Chapter 173-60 limits noise levels from industrial land uses to 60 dBA at residential receiving land uses. Table 1 summarizes the State of Washington Exterior Noise Standards. Refer to the Appendix for the noise standards.

Table 1. State of Washington Exterior Noise Standards

Noise Source	Receiving Property								
Land Use Category	Residential	Commercial	Industrial						
Residential	55 dBA	57 dBA	60 dBA						
Commercial	57 dBA	60 dBA	65 dBA						
Industrial	60 dBA	65 dBA	70 dBA						

NOISE SENSITIVE RECEIVERS

Land uses immediately surrounding the site are residential. The main noise concern is facility operations affecting neighboring properties. Noise sensitive receivers R1 through R12 were identified as the nearest residential receivers to the project site. Refer to Figure 1 for the location of the noise sensitive receivers. Refer to Table 2 for a description of the noise sensitive receivers relative to the site.

Table 2. Summary of Noise Sensitive Receiver Location

Noise Sensitive Receiver	Land Use	Location
R1	Residential	West of Parcel P19158
R2	Residential	West of Parcel P19158
R3	Residential	West of Parcel P19155
R4	Residential	West of Parcel P19108
R5	Residential	North West of Parcel P19108
R6	Residential	North of Parcel P19108
R7	Residential	North of Parcel P19161
R8	Residential	East of Parcel P19161
R9	Residential	East of Parcel P19164
R10	Residential	East of Parcel P19164
R11	Residential	South East of Parcel P19164
R12	Residential	South of Parcel P19164

NOISE ANALYSIS

The future noise generated from Lake Erie PIT Expansion's mining operations has the potential to impact nearby residential properties. The methodology used to analyze and predict operations noise from Lake Erie PIT Expansion involved the use of the CadnaA computer noise model. CadnaA can simulate the physical environment by factoring in x, y, and z geometrics of a particular site to simulate the buildings, obstacles, and typography. The model uses industry recognized algorithms (ISO 9613) to perform

acoustical analyses. The noise generated by future operations was calculated by inputting acoustical sources at the project site. AGI's industry acoustical database was used for the modeling inputs. Refer to Table 3 for the acoustical source data used in the analysis.

Table 3. Acoustical Source Data

Description	Distance, ft	Leq, dBA
Loader (CAT 980C, JD 844, CAT 980B)	50	76.0
Screen (Power Screen-Chiefton)	50	85.6
Excavator (Hitachi EX31) Beaker	50	89.1
Excavator (Hitachi EX31) Loader	50	54.4
Dump Truck (Kenworth W900)	50	80.6

Source: Acoustics Group, Inc. Data Base and Washington Basalt Rock Quarry Field Data

Existing Operations

Lake Erie PIT Expansion's existing operations were modeled with all mining machinery and trucking operations operating simultaneously and continuously over a one hour period at the existing parcels (P19108, P19162, and P19165). The hourly Leq from existing facility operations is estimated to be as high as 39.2, 41.4, 45.1, 47.9, 46.4, 58.3, 57.5, 58.7, 51.7, 50.1, 42.3, and 37.9 dBA at R1 through R12, respectively. Refer to Table 4 for a list of the predicted existing operations noise levels.

Future Operations

Lake Erie PIT Expansion's future operations were modeled at each of the new parcels (P19155, P19158/P90028, P19161, and P19164) to determine worst case operations. Parcels P19158 and P90028 were modeled together due to the layout and proximity to each other. Machinery and trucking operations are all assumed to be operating simultaneously and continuously over a one hour period at each new parcel. Rock crushing and screening operations were also modeled simultaneously at the processing area. The hourly Leq from future facility operations is estimated to be as high as 60.1, 63.5, 55.5, 52.5, 51.7, 55.7, 57.7, 69.8, 65.8, 64.3, 53.8, and 43.8 dBA at R1 through R12, respectively. Refer to Table 4 for the predicted future operations noise levels.

Table 4. Existing and Future Mining Operations Noise Levels

Noise Sensitive Receiver	Existing Operations Noise Level, dBA	Future Operations Noise Level, dBA
R1	39.2	60.1
R2	41.4	63.5
R3	45.1	55.5
R4	47.9	52.5
R5	46.4	51.7
R6	58.3	55.7
R7	57.5	57.7
R8	58.7	69.8
R9	51.7	65.8
R10	50.1	64.3
R11	42.3	53.8
R12	37.9	43.8

IMPACT ASSESSMENT

The peak hour noise level from future operations will be as high as 60.1, 63.5, 55.5, 52.5, 51.7, 55.7, 57.7, 69.8, 65.8, 64.3, 53.8, and 43.8 dBA at R1 through R12, respectively. The future operations noise levels at noise sensitive receivers R1, R2, R8, R9 and R10 would exceed the residential exterior noise standards of 60 dBA. The future operations noise levels at R3 through R7, R11, and R12 would comply with the exterior noise standard of 60 dBA. Noise control measures are required to reduce operations noise levels to comply with the exterior noise standards. Refer to Table 5 for a summary of the future Lake Erie PIT Expansion noise levels and impact assessment.

Table 5. Summary of Future Operations Noise Impact Assessment

Noise Sensitive Receiver	Future Operations Noise Level, dBA	Washington Noise Standard, dBA	Increase above Standard, dB	Impact Assessment
R1	60.1	60	0.1	Exceedance
R2	63.5	60	3.5	Exceedance
R3	55.5	60	-	Compliance
R4	52.5	60	-	Compliance
R5	51.7	60	-	Compliance
R6	55.7	60	-	Compliance
R7	57.7	60	[#]	Compliance
R8	69.8	60	9.8	Exceedance
R9	65.8	60	5.8	Exceedance
R10	64.3	60	4.3	Exceedance
R11	53.8	60	-	Compliance
R12	43.8	60		Compliance

NOISE CONTROL RECOMMENDATIONS

The following noise control measures are recommended in order to comply with the State of Washington's noise standards:

- 1. A 100-ft setback from Rosario Road and all property lines shall be maintained.
- 2. Parcel P19108 shall not be mined.
- 3. When mining Parcel P19158 and Parcel 90028, a 14-ft high earthen Berm or noise barrier should be installed to shield the excavation site on the western side of the site to minimize excavation noise.
- 4. When mining Parcel P19161, a 16-ft high earthen Berm or noise barrier should be installed to shield the excavation equipment on the northern and eastern side of the parcel.
- When mining Parcel P19164, a 12-foot high earthen berm or noise barrier should be installed to shield the excavation equipment at the northern and eastern side of the site.
- 6. All barrier heights are relative to the equipment excavation site grade elevation.
- 7. Rock Crushing and Screening operations should be performed solely at the processing area.

Upon implementation of the noise control recommendations, the future noise levels from operations will be reduced to 56.4, 58.7, 55.5, 52.5, 51.7, 53.8, 55.0, 59.0, 58.1, 55.8, 53.1, and 43.8 dBA at R1 through R12, respectively. The future Lake Erie PIT Expansion operations noise levels with noise control would be reduced to below 60 dBA and would comply with the State of Washington's noise standards for industrial land uses affecting residential land uses. However, compliance with the Noise Standards would not reduce the operations noise to inaudible levels. Refer to Table 6 for a summary of the future Lake Erie PIT Expansion with noise control noise levels and impact assessment.

Table 6. Summary of Operations Noise Impact Assessment with Noise Control

Noise Sensitive Receiver	Future Noise Level with Noise Control, dBA	Washington Standard, dBA	Increase above Standard, dB	Impact Assessment
R1	56.4	60	-	Compliance
R2	58.7	60	4	Compliance
R3	55.5	60	-	Compliance
R4	52.5	60	-	Compliance
R5	51.7	60	-	Compliance
R6	53.8	60	-	Compliance
R7	55.0	60	/ =	Compliance
R8	59.0	60	lei.	Compliance
R9	58.1	60	-	Compliance
R10	55.8	60	(2	Compliance
R11	53.1	60		Compliance
R12	43.8	60	-	Compliance

CONCLUSION

AGI has conducted a noise study of the Lake Erie PIT Expansion Project in Anacortes, WA. Lake Erie PIT Expansion's Site Plan has been reviewed, noise levels analyzed and an impact assessment performed to determine compliance with the State of Washington Noise Standards.

Lake Erie PIT Expansion proposes continued and expanded mining operations at their site. Current Lake Erie PIT operations are at Parcels P19108, P19162, and P19165. Future operations will involve mining and trucking operations at Parcels P19155, P19158, P90028, P19161, and P19164. Noise from future operations would produce noise levels as high as 60.1, 63.5, 55.5, 52.5, 51.7, 55.7, 57.7, 69.8, 65.8, 64.3, 53.8, and 43.8 dBA at R1 through R12, respectively Future operations would not comply with the State of Washington's residential noise standards. Noise control measures are recommended herein for compliance with the Noise Standards. Upon implementation of the noise control recommendations, the future noise levels from operations will be reduced to below 60 dBA. The final engineering design should be reviewed by a qualified acoustical consultant to ensure compliance with the noise standards.

REFERENCES

- 1. Bid Specifications dated July 13, 2016.
- 2. State of Washington Noise Standards.
- 3. Washington Basalt Rock Quarry Field Data.

APPENDIX

STATE OF WASHINGTON EXTERIOR NOISE STANDARDS

MODELING INPUT & OUTPUT

PROJECT DRAWINGS

STATE OF WASHINGTON NOISE STANDARDS

ATTACHMENT D

LAKE ERIE PIT EXPANSION NOISE STUDY

ACOUSTICS GROUP, INC.

Last Update: 12/6/00

Chapter 173-60 WAC

MAXIMUM ENVIRONMENTAL NOISE LEVELS

Chapter Listing

WAC Sections

173-60-010	Authority and purpose.
173-60-020	Definitions.
173-60-030	Identification of environments.
173-60-040	Maximum permissible environmental noise levels.
173-60-050	Exemptions.
173-60-060	Nuisance regulations not prohibited.
173-60-070	Reserved.
173-60-080	Variances and implementation schedules.
173-60-090	Enforcement policy.
173-60-100	Appeals.
173-60-110	Cooperation with local government.
173-60-120	Effective date.

173-60-010

Authority and purpose.

These rules are adopted pursuant to chapter 70.107 RCW, the Noise Control Act of 1974, in order to establish maximum noise levels permissible in identified environments, and thereby to provide use standards relating to the reception of noise within such environments. Vessels, as defined in RCW 88.12.010(21) and regulated for noise under chapter 88.12 RCW (Regulation of recreational vessels), shall be exempt from chapter 173-60 WAC.

[Statutory Authority: Chapter **70.107** RCW. WSR 94-12-001 (Order 92-41), § 173-60-010, filed 5/18/94, effective 6/18/94; Order 74-32, § 173-60-010, filed 4/22/75, effective 9/1/75.]

173-60-020

Definitions.

- (1) "Background sound level" means the level of all sounds in a given environment, independent of the specific source being measured.
- (2) "dBA" means the sound pressure level in decibels measured using the "A" weighting network on a sound level meter. The sound pressure level, in decibels, of a sound is 20 times the logarithm to the base 10 of the ratio of the pressure of the sound to a reference pressure of 20 micropascals.
 - (3) "Department" means the department of ecology.
 - (4) "Director" means the director of the department of ecology.
- (5) "Distribution facilities" means any facility used for distribution of commodities to final consumers, including facilities of utilities that convey water, waste water, natural gas, and electricity.

- (6) "EDNA" means the environmental designation for noise abatement, being an area or zone (environment) within which maximum permissible noise levels are established.
- (7) "Existing" means a process, event, or activity in an established area, producing sound subject to or exempt from this chapter, prior to the effective date of September 1, 1975.
 - (8) "Local government" means county or city government or any combination of the two.
 - (9) "Noise" means the intensity, duration and character of sounds, from any and all sources.
- (10) "Person" means any individual, corporation, partnership, association, governmental body, state agency or other entity whatsoever.
- (11) "Property boundary" means the surveyed line at ground surface, which separates the real property owned, rented, or leased by one or more persons, from that owned, rented, or leased by one or more other persons, and its vertical extension.
- (12) "Racing event" means any motor vehicle competition conducted under a permit issued by a governmental authority having jurisdiction or, if such permit is not required, then under the auspices of a recognized sanctioning body.
- (13) "Receiving property" means real property within which the maximum permissible noise levels specified herein shall not be exceeded from sources outside such property.
- (14) "Sound level meter" means a device which measures sound pressure levels and conforms to Type 1 or Type 2 as specified in the American National Standards Institute Specification S1.4-1971.

[Statutory Authority: Chapter **70.107** RCW. WSR 94-12-001 (Order 92-41), § 173-60-020, filed 5/18/94, effective 6/18/94; WSR 83-15-046 (Order DE 82-42), § 173-60-020, filed 7/19/83; Order DE 77-1, § 173-60-020, filed 6/1/77; Order 74-32, § 173-60-020, filed 4/22/75, effective 9/1/75.]

173-60-030

Identification of environments.

- (1) Except when included within specific prior designations as provided in subsections (2), (3), and (4) of this section, the EDNA of any property shall be based on the following typical uses, taking into consideration the present, future, and historical usage, as well as the usage of adjacent and other lands in the vicinity.
- (a) Class A EDNA Lands where human beings reside and sleep. Typically, Class A EDNA will be the following types of property used for human habitation:
 - (i) Residential
 - (ii) Multiple family living accommodations
 - (iii) Recreational and entertainment, (e.g., camps, parks, camping facilities, and resorts)
- (iv) Community service, (e.g., orphanages, homes for the aged, hospitals, health and correctional facilities)
- (b) Class B EDNA Lands involving uses requiring protection against noise interference with speech. Typically, Class B EDNA will be the following types of property:
 - (i) Commercial living accommodations
 - (ii) Commercial dining establishments
 - (iii) Motor vehicle services
 - (iv) Retail services
 - (v) Banks and office buildings
 - (vi) Miscellaneous commercial services, property not used for human habitation
- (vii) Recreation and entertainment, property not used for human habitation (e.g., theaters, stadiums, fairgrounds, and amusement parks)
- (viii) Community services, property not used for human habitation (e.g., educational, religious, governmental, cultural and recreational facilities).

- (c) Class C EDNA Lands involving economic activities of such a nature that higher noise levels than experienced in other areas is normally to be anticipated. Persons working in these areas are normally covered by noise control regulations of the department of labor and industries. Uses typical of Class A EDNA are generally not permitted within such areas. Typically, Class C EDNA will be the following types of property:
 - (i) Storage, warehouse, and distribution facilities.
- (ii) Industrial property used for the production and fabrication of durable and nondurable man-made goods
 - (iii) Agricultural and silvicultural property used for the production of crops, wood products, or livestock.
- (d) Where there is neither a zoning ordinance in effect nor an adopted comprehensive plan, the legislative authority of local government may, by ordinance or resolution, designate specifically described EDNAs which conform to the above use criteria and, upon departmental approval, EDNAs so designated shall be as set forth in such local determination.
- (e) Where no specific prior designation of EDNAs has been made, the appropriate EDNA for properties involved in any enforcement activity will be determined by the investigating official on the basis of the criteria of (a), (b), and (c) of this subsection.
- (2) In areas covered by a local zoning ordinance, the legislative authority of the local government may, by ordinance or resolution designate EDNAs to conform with the zoning ordinance as follows:
 - (a) Residential zones Class A EDNA
 - (b) Commercial zones Class B EDNA
 - (c) Industrial zones Class C EDNA

Upon approval by the department, EDNAs so designated shall be as set forth in such local determination. EDNA designations shall be amended as necessary to conform to zone changes under the zoning ordinance.

- (3) In areas not covered by a local zoning ordinance but within the coverage of an adopted comprehensive plan the legislative authority of the local government may, by ordinance or resolution designate EDNAs to conform with the comprehensive plan as follows:
 - (a) Residential areas Class A EDNA
 - (b) Commercial areas Class B EDNA
 - (c) Industrial areas Class C EDNA

Upon approval by the department EDNAs so designated shall be as set forth in such local determination. EDNA designations shall be amended as necessary to conform to changes in the comprehensive plan.

(4) The department recognizes that on certain lands, serenity, tranquillity, or quiet are an essential part of the quality of the environment and serve an important public need. Special designation of such lands with appropriate noise level standards by local government may be adopted subject to approval by the department. The director may make such special designation pursuant to the procedures of the Administrative Procedure Act, chapter 34.04 RCW.

[Order 74-32, § 173-60-030, filed 4/22/75, effective 9/1/75.]

173-60-040

Maximum permissible environmental noise levels.

- (1) No person shall cause or permit noise to intrude into the property of another person which noise exceeds the maximum permissible noise levels set forth below in this section.
- (2)(a) The noise limitations established are as set forth in the following table after any applicable adjustments provided for herein are applied.

EDNA OF

NOISE SOUP	RCE	RECEIVING PROPERTY					
	Class A	Class B	Class C				
CLASS A	55 dBA	57 dBA	60 dBA				
CLASS B	57	60	65				
CLASS C	60	65	70				

- (b) Between the hours of 10:00 p.m. and 7:00 a.m. the noise limitations of the foregoing table shall be reduced by 10 dBA for receiving property within Class A EDNAs.
- (c) At any hour of the day or night the applicable noise limitations in (a) and (b) above may be exceeded for any receiving property by no more than:
 - (i) 5 dBA for a total of 15 minutes in any one-hour period; or
 - (ii) 10 dBA for a total of 5 minutes in any one-hour period; or
 - (iii) 15 dBA for a total of 1.5 minutes in any one-hour period.

[Order 74-32, § 173-60-040, filed 4/22/75, effective 9/1/75.]

173-60-050

Exemptions.

- (1) The following shall be exempt from the provisions of WAC **173-60-040** between the hours of 7:00 a.m. and 10:00 p.m.:
- (a) Sounds originating from residential property relating to temporary projects for the maintenance or repair of homes, grounds and appurtenances.
 - (b) Sounds created by the discharge of firearms on authorized shooting ranges.
 - (c) Sounds created by blasting.
 - (d) Sounds created by aircraft engine testing and maintenance not related to flight operations:

Provided, That aircraft testing and maintenance shall be conducted at remote sites whenever possible.

- (e) Sounds created by the installation or repair of essential utility services.
- (2) The following shall be exempt from the provisions of WAC 173-60-040 (2)(b):
- (a) Noise from electrical substations and existing stationary equipment used in the conveyance of water, waste water, and natural gas by a utility.
- (b) Noise from existing industrial installations which exceed the standards contained in these regulations and which, over the previous three years, have consistently operated in excess of 15 hours per day as a consequence of process necessity and/or demonstrated routine normal operation. Changes in working hours, which would affect exemptions under this regulation, require approval of the department.
- (3) The following shall be exempt from the provisions of WAC **173-60-040**, except insofar as such provisions relate to the reception of noise within Class A EDNAs between the hours of 10:00 p.m. and 7:00 a.m.
 - (a) Sounds originating from temporary construction sites as a result of construction activity.
 - (b) Sounds originating from forest harvesting and silvicultural activity.
 - (4) The following shall be exempt from all provisions of WAC 173-60-040:
 - (a) Sounds created by motor vehicles when regulated by chapter 173-62 WAC.
- (b) Sounds originating from aircraft in flight and sounds that originate at airports which are directly related to flight operations.
 - (c) Sounds created by surface carriers engaged in interstate commerce by railroad.
- (d) Sounds created by warning devices not operating continuously for more than five minutes, or bells, chimes, and carillons.
- (e) Sounds created by safety and protective devices where noise suppression would defeat the intent of the device or is not economically feasible.

- (f) Sounds created by emergency equipment and work necessary in the interests of law enforcement or for health safety or welfare of the community.
 - (g) Sounds originating from motor vehicle racing events at existing authorized facilities.
 - (h) Sounds originating from officially sanctioned parades and other public events.
- (i) Sounds emitted from petroleum refinery boilers during startup of said boilers: Provided, That the startup operation is performed during daytime hours whenever possible.
 - (j) Sounds created by the discharge of firearms in the course of hunting.
 - (k) Sounds caused by natural phenomena and unamplified human voices.
- (I) Sounds created by motor vehicles, licensed or unlicensed, when operated off public highways EXCEPT when such sounds are received in Class A EDNAs.
- (m) Sounds originating from existing natural gas transmission and distribution facilities. However, in circumstances where such sounds impact EDNA Class A environments and complaints are received, the director or his designee may take action to abate by application of EDNA Class C source limits to the facility under the requirements of WAC 173-60-050(5).
- (6) Nothing in these exemptions is intended to preclude the department from requiring installation of the best available noise abatement technology consistent with economic feasibility. The establishment of any such requirement shall be subject to the provisions of the Administrative Procedure Act, chapter **34.04** RCW.

[Statutory Authority: Chapter **70.107** RCW. WSR 94-12-001 (Order 92-41), § 173-60-050, filed 5/18/94, effective 6/18/94; WSR 83-15-046 (Order DE 82-42), § 173-60-050, filed 7/19/83; Order DE 77-1, § 173-60-050, filed 6/2/77; Order 75-18, § 173-60-050, filed 8/1/75; Order 74-32, § 173-60-050, filed 4/22/75, effective 9/1/75.]

173-60-060

Nuisance regulations not prohibited.

Nothing in this chapter or the exemptions provided herein, shall be construed as preventing local government from regulating noise from any source as a nuisance. Local resolutions, ordinances, rules or regulations regulating noise on such a basis shall not be deemed inconsistent with this chapter by the department.

[Order 74-32, § 173-60-060, filed 4/22/75, effective 9/1/75.]

173-60-070

Reserved.

Reserved.

[Statutory Authority: Chapter **70.107** RCW. WSR 00-24-134 (Order 00-24), § 173-60-070, filed 12/6/00, effective 1/6/01; WSR 94-12-001 (Order 92-41), § 173-60-070, filed 5/18/94, effective 6/18/94; Order DE 77-1, § 173-60-070, filed 6/1/77; Order 74-32, § 173-60-070, filed 4/22/75, effective 9/1/75.]

173-60-080

Variances and implementation schedules.

- (1) Variances may be granted to any person from any particular requirement of this chapter, if findings are made that immediate compliance with such requirement cannot be achieved because of special circumstances rendering immediate compliance unreasonable in light of economic or physical factors, enroachment [encroachment] upon an existing noise source, or because of nonavailability of feasible technology or control methods. Any such variance or renewal thereof shall be granted only for the minimum time period found to be necessary under the facts and circumstances.
- (2) An implementation schedule for achieving compliance with this chapter shall be incorporated into any variance issued.
- (3) Variances shall be issued only upon application in writing and after providing such information as may be requested. No variance shall be issued for a period of more than 30 days except upon due notice to the public with opportunity to comment. Public hearings may be held, when substantial public interest is shown, at the discretion of the issuing agency.
- (4) Sources of noise, subject to this chapter, upon which construction begins after the effective date hereof shall immediately comply with the requirements of this chapter, except in extraordinary circumstances where overriding considerations of public interest dictate the issuance of a variance.

[Order 74-32, § 173-60-080, filed 4/22/75, effective 9/1/75.]

173-60-090

Enforcement policy.

Noise measurement for the purposes of enforcing the provisions of WAC 173-060-040 shall be measured in dBA with a sound level meter with the point of measurement being at any point within the receiving property. Such enforcement shall be undertaken only upon receipt of a complaint made by a person who resides, owns property, or is employed in the area affected by the noise complained of, EXCEPT for parks, recreational areas, and wildlife sanctuaries. For enforcement purposes pursuant to RCW 70.107.050, each day, defined as the 24-hour period beginning at 12:01 a.m., in which violation of the noise control regulations (chapter 173-60 WAC) occurs, shall constitute a separate violation.

[Order DE 76-5, § 173-60-090, filed 2/5/76; Order 74-32, § 173-60-090, filed 4/22/75, effective 9/1/75.]

173-60-100

Appeals.

Any person aggrieved by any decision of the department in relation to the enforcement of the maximum permissible noise levels provided for herein, the granting or denial of a variance or the approval or disapproval of a local resolution or ordinance for noise abatement and control may appeal to the pollution control hearings board pursuant to chapter 43.21B RCW under the procedures of chapter 371-08 WAC.

[Order 74-32, § 173-60-100, filed 4/22/75, effective 9/1/75.]

173-60-110

Cooperation with local government.

- (1) The department conceives the function of noise abatement and control to be primarily the role of local government and intends actively to encourage local government to adopt measures for noise abatement and control. Wherever such measures are made effective and are being actively enforced, the department does not intend to engage directly in enforcement activities.
- (2) No ordinance or resolution of any local government which imposes noise control requirements differing from those adopted by the department shall be effective unless and until approved by the director. If approval is denied, the department, following submission of such local ordinance or resolution to the department, shall deliver its statement or order of denial, designating in detail the specific provision(s) found to be objectionable and the precise grounds upon which the denial is based, and shall submit to the local government, the department's suggested modification.
- (3) The department shall encourage all local governments enforcing noise ordinances pursuant to this chapter to consider noise criteria and land use planning and zoning.

[Statutory Authority: Chapter **70.107** RCW. WSR 87-06-056 (Order 86-40), § 173-60-110, filed 3/4/87; Order 74-32, § 173-60-110, filed 4/22/75, effective 9/1/75.]

173-60-120

Effective date.

This chapter shall become effective on September 1, 1975. It is the intention of the department to periodically review the provisions hereof as new information becomes available for the purpose of making amendments as appropriate.

[Order 74-32, § 173-60-120, filed 4/22/75, effective 9/1/75.]

MODELING INPUT & OUTPUT

Receiver																						
Name	M.	IĐ	Level Lr	- 41	mit. Value	Land the		Height		Coordinates												
113113					ay Nigh		Auto Naise			X Y												
					ABb) (AB		AULU MUISI	(m)		(m) (m) أ	2.0										
R1.			39.2	39.1	nuncji tour	200	Total				478 25	97.29										
R2			41.4	41.4			* Total	1.5			607.92	102.78										
R3			45.1	45.1			Total	1.5		632.11	860.75	101.35										
R4			47.9	47.9			Total	15		670.92	902.8	97.85										
R5			45.4	46.4		0	Total	15			932.95	95,34										
BG			58.3	58.3		2	Total	15			1020,28	74.29										
R7			57.5	57.5	0	121	* Total	1.5			1020.28	67.98										
RB			58.7	58.7	0		Total	15			758.73	71,22										
R9			51.7	51.7			Total	15			106.99											
R10			50.1	50,1			Total	151			544.42	78.5 80.12								3.4		
R11			42.3	42.3	0	4		15			377.39	88.53										
R12			37.9	37.9	0	0	Total	15			200.67	117.32										
1122			37.3	37.5	(0)		10001	151	r	100405	250.07	117.32										
Foirt Source																						
Name	44.	10	Sends PW		Lw/	0	Corre	rtlon		Sound Reduct	ion At	ttenuatio Oper	ntine Time		ко	Frequi	Direct.	Height		Coordinate		
					Ight Type	Value	morm. Day			R Are		Day	Special	Night	KO	ried	Direct	neign		Coornella	en. Salar erana	
					BA)	101151	dB(A) dB(A)		dB(A)	(m		(m/A)		(min)	(dB)	(Hz)		(m)		(m)	(m) (m)	
Rock Crusher			118,6	118.6	118.6 Lw	MILL	(-)	0 0	an in	for	,	freed	, timely	Property.	torial		500 (nome)	fund	4 r	817,76		4.24
Hock Screen			122.9	122.9	122 9 Lw	M112		B 0	ő								500 (none)		41	826.15		3 98
																	200 (10010)		71	520.15	743.00	13.90
Area Source																						
Name	M.	NO	Result, PWI	t.i	Resu	L PWL*	Lw/L	1		Correction		Soun	d Reduction	Attenuati	o Operati	lor Time		KQ:	Freq	Direct.	Moving Pt. Src	
			Day 1	Evening N	ight Day	Evening	Night Type	Value : a	noom.	Day Eve	ening Ni	aht R	Area		Day	Speck	ni Night				Number	
			(dBA)	(dBA) (d	BA) (dBA)		(dBA)			dB(A) dBi		B(A)	(m²)		(mlm)	(min)		(dB)	[H2]		Day Eveni	ng Night
P19108 No Activity			0	0	0	0	0 Lw			0	0	e	4 2		,	,,	to	4	0	(none)	Day 2102	
Processing Area Permitted Excevator			90.4	90.4	90.4	54.9 54.	54.9 Lw	MLS		0	0	۰							0	(none)		
Processing Area Permitted Dump Truck			116	116	116	80,6 80.	5 80.6 Lw	RCNM6		8	8.	0							0	(none)		
Processing Area Permitted Loader			113.3	113.3	113.3	77.8 77.	77.8 Lw	RONNS		0		8							ð.	(none)		
Processing Area Permitted Loader			113,3	1133	113.3	77.8 77.	77.8 SW	RCHMS		0	9	0							0	(none)		
PSSSE2 Permitted Excevator			124.8	124,8	124.8	80.6 80.	5 80.6 Lw	ML1		0	0	0							0	(none)		
P19162 Permitted Dump Truck			116	116	116	71.8 71.	71.81=	ROMME .		0	0	0							0	(none)		
P19162 Permitted Loader			113.3	113.3	113.3	69.1 69.	1 69 1 Lw	RCNM5		0	0	0							0	(none)		
P19165 Permitted & Expanded Exprestor			124.8	124.B	124.8	78.5 78.	78.5 tw	ML1		0	0	0							5	(none)		
P19165 Permitted & Expanded Dump Truck			116	115		69.8 69.	63.5 tw	ECHM6		6		6							0	(none)		
P19165 Permitted & Expended Loader			113.3	113.3	113.3	67 6	67 to	RCNM5		0	0	a:							0	(none)		
F19155 Addin Exceedur						D	0 Lw			0	0	0							0	(none)		
P19155 Addin Dump Truck				. 9	.0	0				φ.	9	0							0	(none)		
P19155 Addin Loader				.0		0				0	0	0								(none)		
P19156/P90028 Addin Escavator			0	0		9	0 Lw			0	0	0							0	(none)		
P19158/P90028 Addin Dump Truck			10	.0	.0		0 Lw			0	0	0							8	(none)		
P19158/P90028 Addin Loader				. 0		0	0 Ø Lw			0	0	0							D	(none)		
F19161 Addin Exceptor						0	0 Lw					0							0	(none)		
P19151 Addin Dump Truck			. 9	. 0		0				0	0	0							0	(none)		
F1N161 Adelin Looder				.0		0				0	0	0							0	(none)		
P19164 Addin Excavator			:00	0	:0	0	1 III Lw			0	0	0							0	(none)		
P19164 Addin Dump Truck			0	0	0	0				0	0								D.	(none)		
P19164 Addin Loader			10	0	· o	D	0 Lw			0	0								0.	(none)		
Aves Source Coordinates	v (m)	te fem)	n (m) (Constant (m.)																		

Avea Source Coordinates				
Name	x (m)	y (m)	z (m)	Ground (m)
Panadia	780.6	937.33	94.71	93.21
	717.31	91L06	100.79	99.79
	710.36	874.17	112,29	110.79
	936.69	862,64	84.7	83.2
	945.36	916.89	83.58	82.08
	925.06	925.86	84.41	82.91
	823.97	937.15	90.08	88.58
Processing Area	780	775	92.94	91.44
	780	725	93.98	92.48
	850	725	95,57	94.07
	850	775	89.78	88.28
P19162 Permitted	710,74	872.97	112.78	111.28
	696.53	745.6	100.43	98.93
	779.9	744.72	92.94	91.44
	779.95	775.11	92.94	91,44
	850.34	775.36	89.75	88.25
	850,19	744.27	92.47	90.97
	921	744.11	96,5	95
	934.94	861.12	84.93	83.43
P19155 Permitted & Expanded	696.87	744.93	99.97	98,47
	676.25	557.55	123,42	121.92
	910,96	557.51	129.5	128
	920.79	743.42	96,69	95.19
	850.2	744.05	92.49	90.99
	850.22	724.85	95.63	94.13
	779.87	724.85	94.02	92.52
	779.83	744.55	92.94	91.44

```
*****
                                                                                                                                                                                                                                                                                                                                                                                                                                            605,05
694,45
708 12
605,64
696,11
664,44
419,58
508
935,62
921,54
1111,84
1112,23
911,58
676,04
665,77
1111,2
1124,01
922,52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        745.19
745.19
857.28
744.3
744.71
481.9
478.03
623.51
861.38
745.18
745.28
556.22
556.01
482.19
488
744.29
743.44
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               120.64
101.59
117.16
120.94
101.11
129.19
104.86
110.52
84.85
96.2
73.88
72.92
78.79
123.42
129.37
90.41
73.34
96.57
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           119.14
100.09
115.66
119.44
99.61
127.69
109.02
83.35
94.7
72.38
71.42
77.29
127.99
121.92
127.87
88.91
71.84
95.07
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SCS
Dfst.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Surface
Datro
(dB)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Gradient Mult. 8
Droft
(%) (dB)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   = [m] 945.02

873.78

849.39

839.76

817.94

779.43

779.43

770.5.19

695.99

693.42

707.54

735.14

773.68

825.64

833.34

845.55

815.37

799.68

753.37

799.68

753.78

753.37

759.33

779.43

765.31
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ound [m D
82.08
82.34
86.69
87.53
90.07
91.44
92.18
92.18
97.06
100.24
98.5
92.35
88.37
88.37
88.4
89.77
90.29
91.44
91.44
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (m) 91& GB 847.42 822.39 803.14 772.33 755.64 739.6 722.91 706.52 704.94 715.21 725.48 765.27 790.3 834.59 839.72 833.3 821.75 799.29 780.67 768.48
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  82.08
85,34
86,69
87,53
90,07
91,44
92,18
97,06
100,24
98,5
93,67
94,95
92,35
89,63
88,37
86,37
86,37
88,4
90,29
91,44
91,44
                                                                                                                                                                                                                                                                                                                                                                                                       RCNM5
RCNM6
ML1
ML3
ML8
ML11
ML12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Lw
Lw
Lw
Lw
Lw
Lw
Lw
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  63
0
120
121.2
95.1
114.7
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                500
116.5
111
122.2
89.1
111.7
121.8
126.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              8000 A
0
103
107.2
70.1
94.7
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             113.3
116
124.8
90.4
115.2
118.6
122.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          125
0
117
119.2
90.1
115.7
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 250
0
111
120.2
89.1
113.7
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1000
0
111
120.2
85.1
109.7
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2000
0
109
117.2
81.1
108.7
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4000
0
107
113.2
76.1
102.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             116.5
123.1
128.3
98.1
120.9
121.8
126,1
Compression of the Compression o
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Lr w/o No.
Dey
41(A)
22 41.4
45.1
47.9
46.4
58.3
57.5
58.7
51.7
50.1
42.3
37.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          di. req.
Day
401A)
392
414
45.1
47.9
46.4
58.3
57.5
58.7
51.7
50.1
42.3
37.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ral, Axis
Station 0
m #0
0 328
0 136
0 136
0 134
0 0
0 205
0 345
0 345
0 345
0 345
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Night (1944) 37-1 41.4 45.1 47-9 46.4 58.3 57-5 58.7 50.1 42.3 37.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Night 41.4 45.1 47.9 46.4 58.3 57.5 58.7 50.1 42.3 37.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Distance
103.76
135.6
69.22
73.92
100.11
107.45
169.85
47.62
68.37
47.88
179.74
312.01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Day dB(A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     dB(A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             -1.34
-1.4.47
-17.97
-20.14
-7.79
-14.1
-0.97
-6.48
-4.86
-3.55
-9.59
```

Codes A Input Output
Project: Midures & Associates - Lake trie NY Expension
Case: Future Parcel P19155 - No Nobe Control

	Reserver Name AL R2 R3 R3 R4 R5 R6 R7 R6 R7 R8 R9 R10 R11 R12 R12	*	10		(d8A) 36.7 38.5 55.5 52.5 51.7 51.2 52.1 48.7 40 37.6 33.4 92.5	Might	e 0 0 0 0	Total		13 15 15 15 15 15 15 15		Y (m) (r 478.25 607.92 860.75 902.8 932.95 1020.28 1036.82 758.73 596.99 544.42 377.39	101.74 101.74 101.35 97.85 95.34 74.29 57.98 71.22 78.5 80.12 80.53 117.32									
	Name Rock Crusher Rock Streen		ю			Typa Late rw		Corn norm. Day dB(A) dB(A	Everning dB(A) 0	g Night d5(A) 0	Sound Red	action At Arms (m²)	tenuatio Opara Day (mla)	ting Time Special (min)	Night:		(Hz) 500 (n			Coordinate X (m) B17.76 826.35	Y I (m) (m) 74297 9	14.84 13.98
	Ann Source Name	ж	0	Result, FWL	venina Nikht	Result, F		Lw/ Might Type		norm.	Correction	Evening Ni		Reduction	Attenuatio	Operating	Time	KO	Freeq.		Moving Pt. Src. Number	
)	F21408 No Activity Processing Area Permitted During Visco Processing Area Permitted During Visco Processing Area Permitted During Visco Processing Area Permitted Conde Processing Area Permitted Conde F21412 Armitted Acquanted Consensor F21412 Armitted Acquanted Conde F21412 Armitted Acquanted Conde F21412 Armitted Acquanted F21412 Armitted Conde F214				MA) (58A) 0 90.4 116 113.3 113.3 0 0 0 0 124.8 116	(dRA)	(dBA) (0 0 9 54.9 .6 80.6 .8 77.8 .8 77.8 0 0 0 0 0 0 0 0 0 0 0 0	Property Property	MES ROMME ROMME ROMME ROMME	dB(A)	## ## ## ## ## ## ## ## ## ## ## ## ##	(A)48(A) dil	(A) 0 0 0 0 0 0 0 0 0 0 0 0 0	(cm ²)				gurt John (de		(notta) (notta) (notta) (none)		ng Night.
	Area Souria Coordinates Name P19108	m (m) 780 717.2 710.3 936.6 945.3 925.6 828.5	16 937.33 31 911.06 36 874.17 39 862.64 36 916.89 36 925.86	94.71 100.79 112.29 84.7 83.58 84.41 90.08	93.21 99.29 110.79 83.2 82.08 82.91 83.58																	
	Processing Area F591.62 Permitted	710.7 666.5 779.5 779.5	90 725 50 725 50 775 74 872.97 53 745.6 9 744.72 95 775.11	95.98 95.57 89.78 112.78 100.43 92.94 92.94 89.75	91.44 92.48 94.07 88.28 111.28 98.93 91.44 91.44 88.25																	
	P1916S Permitted & Espanded	850.1 934.5 696.8 676.2 910.5 920.7 650.2 779.8	11 744.11 24 861.12 27 744.93 25 557.59 26 557.51 27 743.42 27 744.05 27 724.85	84.93 99.97 123.42 129.5 98.69 92.46 95.63 94.02	90.97 95 83.43 98.47 121.92 128 95.19 90.99 94.13 92.52																	
	PINISS	779.8 605.0 694.5 706.1	5 745.19 5 745.19	120.64 101.59	91.44 119.14 100.09 119.66																	

P19150/P90028 Addin P19161 Addin P1964 Addin	665.64 744.31 120.304 119.64 665.11 744.71 101.11 99.61 664.44 461.3 120.39 127.89 439.30 670.30 150.85 100.35 918.63 181.13 Mars 100.35 918.63 181.13 Mars 100.35 181.14 17.45 100.35 181.14 17.45 100.35 181.15 17.45 100.35 181
Randowyn Name Goffring	Max No No No No No No No N
Existing	833.54 790.3 84.37 86.37
Parcal 19155 Parcal 19155	34.5 0 0 13 0 0 0 0 32 0 0 1 0 0 760.76 773.87 91.44 91.44 610.49 746.62 120.17 120.17 134.5 0 0 13 0 0 0 0 32 0 0 1 0 0 831.65 96.51 893.1 893.1
Sound Levels Name Frint Cod Suader RDMA Overy Truck KCNM Extractor Resets Extractor Resets Extractor Resets Extractor Book Cristner Sortens Sortens	13
Reminist Turbile Recalcular Recalcular RA1 RA2 RA3 RA4 RA5 RA5 RA5 RA5 RA5 RA5 RA6 RA7 RA6 RA7 RA6 RA7 RA6 RA7	Land Lian Limithing Walsh red, Arth Station Direct Mark Station Direct Mark Station Direct Mark Station Mark Direct Mark Direct Direc

Carlma A Impurt Gutpusi
Profect: Niclascus St. Americana - Lake Eria PIT Experation
Come: Future Parcula PLOSS/PRODIS: - No Niclea Cartrol

Recolvent Name R1 R2 R3 R4 R5 R6 R7 R8		E
Point Source Bock Crumer Rock Screen	60 Result_PWL Lw / U Correction Co	Attenuado Operating Titem 83 Free Cited Height Coordinates Z
Area Servas Sistema P13108 No Activity Pricessing Area Farminal Outcomer Pricessing Area Farminal Outcomer Pricessing Area Farminal Outcomer Processing Area Farminal Outcomer Processing Area Farminal Outcomer P13102 Perminal Outcomer P13102 Perminal Outcomer P13103 Addition Outcomer P1310 Addition Outcomer P		Sound Renduction Attenuatio Operating Tarre RD Frequency Control
Processing Area	6 9256 84.4 8291 7 9713 90:08 8658 0 773 9294 91.44 0 775 9398 92.48 0 775 937 9407	
F13362 Permitted	0 75 9.57 94.07 0 775 9.8.28 4 87.29 11.78	
P19165 Permitted & Expanded	4 (ALL) 97.5 95.9 95.9 95.9 95.9 95.9 95.9 95.9	
PINESS	174.65 90.05 92.14 174.65 90.05 92.14 174.65 92.14 174.	540

	P191 <u>98</u> /P90028 Addin	605.5 635.5	1 744	11 101	11 99	55																						
	PL9161, Addin	419.5 935.4 937.5 1111.6 1112.5	8 478. 8 523. 2 861. 4 745.	10 104 13 110 18 84 18 9	36 100 52 100 65 60 62 1	36																						
	727364 A00/m	1012 911.5 696.6 665.7 1111. 1124.6 922.3	3 6423 8 556. 4 556. 7 482. 2 46 8 744.	12 129 13 129 14 129 19 129 18 90 19 71	75 // 45 137 42 121 37 127 41 65 34 71	29 59 32 87																						
	Acadaraya	м	ID	Lme			CountB	ıta ı	SERVET COUNT	Data					Speed Lh	mit	SCS	Surface		Code	e sade	Sefection.						
	Existing			Day (dBA)	Eyening (dBA) LS	Might (disA) 0	OTV 0	Str.class,	W		Blight D	(%F) E	ivening i		Auto (km/h)	Truck (km/h)	DBL	Dstro (dB)	T/ypa	(N)	Dreft (db) 0	(m) O	DlrL (m)	945.0	2 918.03	82.08	round (m Dist (m) 82.06	LSlope (%)
																								873.71 849.38 839.70 817.94 779.45 735.77 708.45 695.26 693.41 707.5- 735.14 773.65 825.66	6 8/8.14 772.33 755.64 8 739.6 9 722.91 9 705.22 2 690.17 686.32 4 704.94 5 715.21 8 725.48	85.34 84.69 87,53 90,07 91,44 92,18 97,05 100,24 98,5 93,67 94,95 92,35 85,63	85.54 85.69 87.53 90.07 91.44 91.44 92.18 97.06 100.24 98.5 93.67 94.95 92.35 89.53	
	Existing			8	G.	ø	0		13	0	ø	o	8	U		o .		0	0		0			833.34 854.53 836.55	790.3 2 834.59 5 839.72	88.37 86,37 85.4	89.37 86.37 88.4	
)	Parcel P19155 P90028			,	15	•	0		33	0		(0)	00	0.0) 3	12		œ.	0	10	0	ø		815.31 798.33 779.43 769.1 765.31 691.44 432.12	7 833.3 821.75 9 790.29 9 780.67 L 768.48 1 685.76	89.77 90.29 91.44 91.44 91.44 101.55 104.33	89.77 90.79 91.44 91.44 91.44 101.55	
	Sound Levels																							432.12	* ************************************	10433	10423	
	Name Front End Lunder &CMM	RCNM5	Type	Oktava: Weight.	Spectrum (3:	胡) 己 0	63 13	5 250	500 116.5	1000	2000	4000	8000 /	1133	lin 116	Source												
	Dump Truck RCNM Excavator Smaller	RCHM6 ML1	Lw			0 12	120 1) 1.2 119	7 111 2 120.2	111	111	109 117.2	107	109 107.2	116 124.8	173.	1												
	Excevator loading Bucket/Tractor Rock Crusher		Lw Lw			0 11	5.1 90 4.7 115 0		89.1 111.7 121.6	85.1 109.7 0	81.1 105.7 0	76.1 102.7 0	70.1 94.7 0	90.4 115.2 118.6	98. 120. 12L	9												
	Screens		Lw			ō		0 0	126.1	0	0	0	0	122.9	126.	1												
	Plumst Tuble Receiver Neuron		Land Use	Limiting Day dB(A)	Value Night dB(A)	rel. Axi Station	Distance	Height I	B(A) d		my 16 5(A) di	ght D		light	Dey dB(A)	Night dB(A)	passive A	¥C										
	RL RZ RS				0	0	78 102.7 103 135. 109 157.9	6 -1.34	63.5 63.2	601 633 65.2	693	60.1 63.5 45.2	0	0 0 D			8											
	R4 R3				0	0	BS 149.8 61 157.5	6 6,63 4 5,05	43.1	Q1 Q2	43.1	43.1	0	0			ŝ											
	R6 R7 RB				0	0	0 107.4 0 169.5 0 265.1	5 -14.1	53.8 52.7 46.8	51.8 52.7 45.8	51.8 52.7 40.8	31.8 32.7 44.8	6	0		ŝ	š											
	R9 R10				9	0 :	15 375.2 15 396.9	2 -9.51	37A	40.1 37.4	40.1 17.8	40.1 X7.6	0	0			ŝ											
	N11 R12				0		167 489.3 167 569.		633	93	03	0.2	0	0			Ÿ											
	Case: Future Partura P28150/P00028 - Noba Cantrol																											
	Panalturi Name	M	_			white o		ilian.																				
		M	10	Level Lr Day (dBA)	Night (dBA)	Day (dBA)	Night (dBA)	Type A	uto N	otse Type (n	elght nì	2.8	oordinatas nii 6		t (m)													
	R1 R2			56 58	.4 56 .7 58	14	0	0	T	otal otal	1.5 r 1.5 r		329.67 368.7	478.25 607.92	97.2 102.7	6												
	R3 R4 R5			45 43 42	.3 43	3	0	0	T	otel otel otel	15 r 15 r		632.11 670.52	902.6 937.95	101.3 97.8 97.3	S												
					-		200	90					_															

-

R6			51	.8	51.8	0	4		¥	Total	1.5	6.	211	1600.1	9 74.	.29	
87			52	7	52.7	0				Total	1.5	6.	1004-42			98	
R8			48.	.8	48.8		- 6		9	Total	1.5	6	1157,04				
RS			40	i.L	40.1	O		iii		Total	1.5		1161.69	596.9	9 71	8.5	
RIO			37.	.6	37.6	0			•	Total	1.5	F	1157.85	544.4	2 80.	12	
RII			3.3.	.8	33.8	0	- 0			Total	1.5	W	1116.77	377.3	93 68	53	
R12			43.	.2	43.2	0	0	6		Total	1.5	6	1004/99	206.6	117.	32	
(retardenest																	
Name	M.	103	rel_Heigh	nt Sloon	To.	o Wkith											
		43	(m)		1:00 (m		s [m]	y (m)	ating .	Ground (m	0						
Berrn			4.2		0.5		#12 #1	477.2	500.80	102A1							
							105.35		100.91	100.41							
							199 51	144.01	117.96	117.56							
Result Table																	
Receiver		Land Use	Umiting 9			. Anis				he Contract			tra/No		Excession		24
	(0)	Land Use	Day	Night	Sta	ndon !	Distance	Height	Day	Night	Dary	Night	Day	Nighii	Day	Night	
Receiver Name	860	Land Use	Day dB(A)	Night (A)Bb	Sta m	don !	PS.	Height	Day dB(A)	Night dB(A)	Day dB(A)	dB(A)	Day dB(A)	Nighii dB(A)	Day dB(A)	Night dB(A)	
Receiver Name R1	10	Land Use	Day dB(A)	Night dB(A)	Sta m O	328	102.76	Height on -7,04	Day d8(A) 55,4	Night d8(A) 56.4	(kay dB(A) S6.4	dB(A) 56.4	Day dB(A)	Nighi dB(A)	Dary dB(A)	Night dB(A)	
Receiver Name R1 R2	(80.00	Land Use	Day dB(A)	Night dE(A)	Sta m 0	328 303	102.76 135.6	7.04 -7.04	Day d8(A) 55,4	Night d8(A) 56.4 58.7	Oay dB(A) 56.4 58.7	dB(A) 56.4 58.3	Day dB(A) g d	Nighii dB(A)	Dary dB(A) d = 0 -	Nighi dB[A]	dB
Receiver Name R1 R2 R3	(0)	Land Use	Day dB(A)	A)Bb dB(A) dB dB(A) dB dB dB dB dB dB dB dB dB dB dB dB dB	Sta m 0 0	328 303 309	102.76 135.6 157.32	-7.04 -1.34 9.31	Day d8(A) 55,4 58,7 45,1	Night d8(A) 56.4 58.7 45.1	Day dB(A) \$6.4 58.7 45.1	dB(A) 56.4 58.1 45.1	Day dB(A) 0 7 B	Nighii dB(A)	Dary dB(A) d = 0 - 0 -	Nighi dB[A]	dB
Receiver Name R1 R2 R3 R4	8000	Land Use	Day dB(A)	Night dE(A) o o	0 0 0 0	328 303 309 85	102.76 135.6 157.32 149.86	-7.04 -1.34 9.31 6.63	Day d8(A) 55,4 58,7 45,1	Night d8(A) 56.4 58.7 45.1 43.3	Day dB(A) 56.4 58.7 45.1 43.3	d8(A) 56.4 58.3 45.1 43.3	Day dB(A) d 0 7 6 L 0	Nighii dB(A)	Dary dB(A) d = 0 - 0 -	Nighi dB[A]	dBi
Receiver Name R1 R2 R3 R4	∂ o ≎:	Land Use	Day dB(A)	Night dE(A) d d d d	m o o o	328 303 309 85 61	102.76 135.6 157.32 149.86 157.34	-7.04 -1.34 9.31 6.63 5.05	Day d8(A) 55,4 58,7 45,1 43,3 42,6	Night d8(A) 56.4 58.7 45.1 43.3 42.6	Day dB(A) 56.4 58.7 45.1 43.3 42.6	d8(A) 56.4 58.3 45.1 43.3 42.6	Day dB(A) 7 B L D	Nighii dB(A)	Dary dB(A) 0 - 0 - 0 - 0 -	Nighi dB[A]	dBi
Receiver Name R1 R2 R3 R4 R4 R5	0	Land Use	Day dB(A)	Night dE(A) d d d d d d d	5 tz m 0 0 0 0	328 303 309 85 61 0	102.76 135.6 157.32 149.86 157.34 107.45	-7.04 -1.34 9.31 6.63 5.05	Day d8(A) 55.4 58.7 45.1 43.3 42.6 51.8	Night de(A) 58.4 58.7 45.1 43.3 42.6 51.8	0ay dB(A) 56.4 58.7 45.1 43.3 42.6 51.8	d8(A) 56.4 58.3 45.1 43.3 42.6 51.8	Day dB(A) 7 6 L 0 3 0 5 0	Nighii dB(A)	Dary dB(A) 0 = 0 - 0 - 0 - 0 =	Night dB(A)	dB
Receiver Name R1 R2 R3 R4 R5 R6 R7	(8)	Land Use	Day dB(A)	Night dE(A) de de de de de de de de de de de de de	Star m 0 0 0 0	328 303 309 85 61 0	102.76 135.6 157.32 149.26 157.34 107.45 169.85	-7.04 -1.34 9.31 6.63 5.05 -7.79	Day d8(A) 56,4 58,7 45,1 43,3 42,6 51,8	Night d8(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7	Day dB[A] 56.4 58.7 45.1 43.3 42.6 51.8 52.7	d8 (A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7	Day d8(A) 7 8 1 8 3 0 5 0	Nighii dB(A)	Dary dB(A) 0 - 0 - 0 - 0 - 0 - 0 -	Night dB(A)	d₿
Receiver Name R1 R2 R3 R3 R4 R5 R6 R6 R6 R7 R8	19	Land Use	Day dB(A)	Night dE(A)	Star m 0 0 0 0 0	328 303 309 85 61 0	102.76 135.6 157.32 149.86 157.34 107.45 169.85 265.19	-7.04 -1.34 9.31 6.63 5.05 -7.79 -14.1	Day d8(A) 56,4 58,7 45,1 43,3 42,6 51,8 52,7 48,8	Night d8(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8	Day dB(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8	dB(A) 56.4 58.3 45.1 43.3 42.6 51.6 52.7	Day dB(A) 7 B 1 B 3 0 5 0 8 0 7 B	Nighii dB{A}	Day dB(A) 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Night dB(A)	dB
Receiver Mainme 4.1 4.2 6.3 6.4 6.5 6.6 6.7 7.8 8.8 8.9	-00C	Land Use	Day dB(A)	Night dE(A)	Star m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	328 309 309 85 61 0 0	102.76 135.6 157.32 149.86 157.34 107.45 169.85 265.19 375.29	-7,04 -1,34 9,31 6,63 5,05 -7,79 -14,1	Day d8(A) 56,4 58,7 45,1 43,3 42,6 51,8 52,7 48,8	Night de(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8 40.1	Day dB(A) \$6.4 \$8.7 45.1 43.3 42.6 51.8 52.7 48.9 40.1	d8(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8	Day dB(A) 7 B 1 B 3 0 5 0 8 0 7 0 8 0	Nighii dB{A}	Dary dB(A) 0 - 0 - 0 - 0 - 0 - 0 -	Nighi dB(A)	d₿
Recober Name 81 82 83 84 85 86 87 87 88 80 80 80	in 1	Land Use	Day dB(A)	Night dE(A)	State	328 309 85 61 0 0 515 515	102.76 135.6 157.32 149.86 157.34 107.45 169.85 265.19 375.29	-7.04 -1.34 9.31 6.63 5.05 -7.79 -14.1 10.86 11.13	Day d8(A) 55.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8 40.1 37.6	Night de(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8 40.1 37.6	Day dB(A) \$6.4 \$8.7 45.1 43.3 42.6 51.8 52.7 49.9 40.1 37.6	dB(A) 56.4 58.3 45.1 43.3 42.6 51.6 52.7	Day dB(A) 7 B 1 B 3 0 5 0 8 0 7 0 8 0	Nighii dB[A]	Day dB(A) 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Night dB(A)	dB
Receiver Mainme 4.1 4.2 6.3 6.4 6.5 6.6 6.7 7.8 8.8 8.9	(art)	Land Use	Diry dB(A)	Night dE(A)	Star m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	328 309 309 85 61 0 0	102.76 135.6 157.32 149.86 157.34 107.45 169.85 265.19 375.29	-7.04 -1.34 9.31 6.63 5.05 -7.79 -14.1 10.86 11.13 -9.51	Day d8(A) 55.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8 40.1 37.6	Night d8(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8 40.1 37.6 33.8	Day dB(A) \$6.4 \$8.7 45.1 43.3 42.6 51.8 52.7 48.8 40.1 37.6 33.8	d8(A) 56.4 58.7 45.1 43.3 42.6 51.8 52.7 48.8	Day dB(A) 7 L 3 0 6 0 7 0 8 0 7 0 0 7	Nighti dB(A)	Day dB(A) 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Night dB(A)	\$25,000,000,000,000

CarlemA freput Ostgod Project: McLesse & Associates - Laim Erio PTT Expertation Cause: Futuro Parcel P19161 - No Notae Control

Pincariver Nature	MAL ID Level Lr Lingt, Value Land Use Height Coordinates Day Night Day Hight Type Auto Nobe Type K v Z	
R1 R2 R2 R3 R4 R5 R6 R7 R8	(601A) (6	
Point Source Reck Crusher	March Part Law / L	
Rock Screen	2225 1229 1229 to 0 0 0 500 point 4r als 25 19945 1839	
Area Source Name	10 Result.PWIL Remail: PWIL* Remail: P	
P. J.S.C. Mo. No. Celvity P. Frockmails, func. Permissed Excurentry #ISSCRAVIA AND Permissed Excurentry #ISSCRAVIA AND Permissed Loader #ISSCRAVIA AND Permissed Loader #ISSCRAVIA AND Permissed Loader #ISSCRAVIA AND PERMISSED AND PERMISSED P. J.S.C. Permissed Loader P. J.S.C. P.	Columb C	
	1/13-5	
Processing Arms	780 775 82.84 91.44 780 775 93.8 82.45 650 725 95.87 94.07	
F19542 Perreland	#50 775 #0.78 #5.28 #5.28 #5.29 #5.2	
P19(65 Permitted & Expended	921. 74-61.1 96.5 95 934.9 WELL 2 6439 13 46.7 968.27 74-63 19.37 15-64.7 91.00 15-75 12.00 12.0	
P1913S	779.83 744.55 92.94 91.44 555.55 745.32 120.94 1353.4 844.84 743.9 100.99 100.09 708.12 857.28 137.84 135.84	

	P19158/P90028 Addin	605. 695. 664.	11 744.7 64 481	S 129.19	99.51 127.69																					
	FIRST Adds	419. 5 935. 821. 1111.	03 623.5 12 851.3 54 745.1 84 74	1 110.52 8 64.85 8 96.2 6 79.88	109.36 109,07 63.35 94.7 72.38																					
	P19164 Addin	1112 1013 911 676. 665. 1111 1126. 922	1.5 8(2.2 58 556.2 34 556.2 77 482.1 1.2 45 31 744.2	78.79 2 129.49 1 123.42 9 129.37 8 90.41 9 73.34	71.42 77.29 127.99 121.92 127.87 58.91 71.84 95.07																					
	Roadways Name Existing		10	Lme Day Eve (dBA) (dB	sing Nāgi A) (dis	Count Date t DTV St	orciass. M. Day	Evening	y Night O	p (%) Day 0	Evenin 0	u Mgh O	Aut	ed Limit 3 Truck (h) (km/h) 32	SCS Dirt.	Surface Ostro (dB)	Түүл	Gradie (%)	ont Mult. Orell (dB)		Dbst. {m}	a (m) 945.03 873.78	918.03 847.42	82.08 85.34 86.69	Fround (m/Dist (m) 62,05 65,34 86,59	LSlope (%)
																						899.76 817.94 778.42 735,78 708.15 698.56 693.47 707.54 735.14	6 809.14 772.33 755.64 759.6 722.91 706.22 690.17 686.32 704.94 715.21	88.69 87.53 90.07 91.44 91.44 92.18 97.05 100.24 98.5 93.57 94.95 92.35	85.89 87.53 90.07 91.44 91.44 92.18 97.06 100.24 98.5 93.67 94.95 92.35	
	Exhibiting			34.5		6		9	•	۰	•	0	•	N		•	0	Ē	•	0		875.64 833.34 854.52 836.55 815.37 799.33 779.43	790.3 834.59 839.72 833.3 821.73	89.63 88.37 96.37 68.4 89.77 90.29 91.44	89.63 88.37 86.37 86.4 89.77 80.29 91.44	
)	Percel FIXIST			345		0		13	0	0	0	0	0	32		0	æ	1)	ø	0		769.8 769.8 765.31 853.43 1109.58	780.57 759.48 824.6	91.44 91.44 86.28 72.19	91.44 91.44 86.28 72.19	
	Spund Geneta Rism Film Film	RCNMS RCNM6 ML3 ML3 ML8 ML1, ML1,	Typin Lw Lw Lw Lw Lw Lw Lw Lw Lw	Oktave Spectri Weight.	3L5 0 0 0	63 125 0 0 120 117 1212 119.2 95.1 90.1 114.7 115.7 0 0	111 120.2 69.1 113.7	116.5 111 1 122.2 12 89.1 8 111.7 10	111 II 0.2 117 5.1 81 9.7 108	0 09 : 7.2 11 1.1 7	0 107 : 3.2 10 6.1 7	103 7-2 10.1 4.7	116 1248 904 115.2 118.6	Source 116.5 123.1 128.9 98.1 120.9 121.8 126.1												
	Pennik Tyble Restrict Restrict 81 82 83 84 84 85 86 86 87 88 88 89 80 80 80 80 80 80 80 80 80 80 80 80 80		Lend Use	Limiting Value Day Nig dB(A) dB(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			deht Day de (A) -2.54 9.31 6.65 5.05 -7.79 -14.1 -0.97 6.31 7.93	38.9 3 38.7 3 40.1 4 40.3 4 43.4 4 55.7 5 57.7 5 69.8 6 62.1 6 62.1 6 53.5 5	Owy d8(A) 6.3 36 6.7 38 6.1 40 6.3 40 6.3 45 6.7 55 7.7 57 9.8 69 2.1 62 6.5 56 1.2 51	1.7 3 3.1 4 3.3 4 3.7 5 7.7 5 9.8 6 2.1 6 5.5 5	Lr w/N Day d8(A) 6.3 8.7 0.1 0.3 3.4 5.7 7.7 9.8 2.1 6.5 1.2 41	olse Cont Night dis (A)		Might	parjahve.l	NC										
	Cam: Potent Proved F33255 - Roba Common Footstever Hannel Rame Rame Ram Ra	м.	ID	Linvel Lr Day Nigi (d8A) (d8. 36.3 38.7 40.1 40.3 43.3 53.8 SS	nt Day	Night Ty	rrd Use per Auto	Nobe T Total Total Total Total Total Total	(m) 1 1 1 1 1	51 51 51 51 51 51	632 670	Y (m) 6.7 64 11 86 92 5	97.92 1 80.75 1 902.8 92.95 20.28	97.25 00.78 01.25 97.85 95.34 74.29												

R9 57.2 57.1 0 0 π Total 13 191.06 596.39 1 R10 54.7 54.7 0 0 π Total 13 1357.85 586.49 3	1.22
R9 57.2 57.2 0 0 π Total 13.7 198.08 586.39 R10 54.7 54.7 0 0 π Total 13.9 1357.85 586.49 R10	.22
RIO 94.7 54.7 8 8 T Total 13 131.85 344.41 8	
	78.5
	0.12
	3.53
R12 #1.7 #1.7 @ # # Total 1.5 # 1094.05 206.87 11	132
Enterined	
Name M. 10 set Height Slope Top Width	
(m) 1:00 (m) x (m) y (m) c (m) Ground (m)	
3 66 0.5 1 1118.51 490.09 87.03 87.03	
1177.98 748.19 71.51 71.51	
8em 488 0.5 1 1245 7436 7481 94	
11233 7829 7037 94	
102058 84599 76 83 94	
93038 85577 80.81 94	
and a print and	
Remait Yebbo	
Receiver Land Use Umiding Value rel Axis tr w/o Nohe Control Lt req . Lr w/ Nohe Control Exceed	ing passive
Name Day Night Station Distance Height Day Night Day Night Day Night Day	Mant:
(A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	eff(A) dB(A)
R1 0 352 42098 -2.94 363 363 363 363 0 0	* *
R2 0 352 334.38 2.54 36.7 36.7 36.7 36.7 98.7 0 0	(A) (A)
R3 0 0 309 15732 9.31 40.1 40.1 40.1 40.1 0 0	S 1
R4 85 149.86 6.63 40.3 40.3 40.3 40.3 60.3	8 6
95 0 61 157.34 5.05 43.3 43.3 43.3 43.3 0 0 0	20 20
R6 0 0 107.45 -7.79 53.8 53.8 53.8 53.8 6	
R7 0 0 169,85 -14,1 55 55 55 55	G 50
RE 0 220 202.84 15 16 59 59 59 59 59 0	S &
	0 0
R9 0 345 68.37 -6.48 57.2 57.2 57.2 0 810 0 345 47.88 -4.86 54.7 54.7 54.7 0 0	8 8
811 9 345 179.74 3.55 51.2 51.2 51.2 51.2 0	27 1
	2 1
R12 0 250 312.01, -9.59 41.7 41.7 41.7 41.7 6 6-	

Cachas Arquet Output
Project: Niclean & American - Lake Erle PT Equation
Cases Salves Decrea 219 644 - No Make Control

Norma	M. ID Level I:r Limit: Value Land Usa Helgirit Coordinates
61 R2 F9 R4 R6 R6 R7 R8 R8 R8 R8 R8 R8 R8 R8 R8 R8 R8 R8 R8	Pay Night Day Night Type Auto Nobal Type Auto Nobal Type Auto Nobal Type Auto Nobal Type Night Type Auto Nobal Type Night Type Auto Nobal Type Night Night Type Night
Point Source	1000 1000 1000 1000 1000 1000
Name	AA 30 Remit PMI, Lw/U Correction Sound Reduction Attenuatio Operating Time RO Freq. Divert. Height Coordinates Day Evening Wight Types Wake norm Day Evening Hight R Ares Day Special Night X Y Z
Rock Crusher Rock Screen	(dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (dBA) (mB) (mB) (mB) (mB) (mB) (mB) (mB) (mB
Area Source	
Herne	M. 16 Result-PWL Result-PWL Result-PWL Lw/II Correction Sound Reduction Attenuate Operating Time 16 Freq. Direct. Moving PLSc Day Evening Might Day Evening Night Type Value screen. Day Evening Night Avis Day Special Night Number
P 1910B No Anchiny From single Area Are remitted Document From single Area Are remitted Local Study From Single Area Are remitted Loade From Single Area Are remitted Loade From Single Area Are remitted Loade From Single Area Area Single Area From Single Area Area Single Area From Single Area Area Single Area From Single Area Single Area From Si	(2004) (2014) (2
Ames Source Coordinates (tome #13108	* [m] * 1 [m] * 1 [m] * 2 [m] * 3 [m]
Processing Area	100 273 86.24 86.24 100 100 100 100 100 100 100 100 100 10
P19162 Permitted	600 1/2 11 11 11 11 11 11 11 11 11 11 11 11 11
P18165 Permitted & Expanded	984.84 98.1.2 94.93 85.83 99.87 96.47 676.22 57.53 128.42 12.52 12.62 12
Paress.	778.07 748.05 94.02 92.32 778.06 95.05 92.04 91.44 95.05 91.44 95.05 94.

.

	P.L9158/P900728 Addin	695.11 . 7	WAJI 101.11	19.44 19.61														
	P1.9161 Addin	103 6 93143 8 12158 3 1111.84	129.51 110.52 1 911.28 84.85 141.18 96.3 746 73.88	77,36 H.02 S1.35 S4.7 72.38														
	PERSON AND	101.35 6 911.56 5 676.64 7 665.77 4 1111.7 1134.01 7	MIAI 78.79 06.22 129.69 1 06.01 129.42 1 MILES 129.37 3 468 90.41 MILES 79.34	7.19 7.59 1.53 1.62 1.84 6.63														
	Roadways																	
	Name	W. 10	Lme Day Even		iovent Depta (exact Count Data	pl	761		Speed Limit Auto Truck	SCS Dist.	Surface Detro	Туре	Gradient M	ult.Reflection mil Hibuild	Disc		
	Ealsting		(disa) (disa	(dBA)		Day Evening 19 0	Night De		g Night O	(km/h) (km/h)		(dB)		(16) (d)	(m)	(m)	a (m) v (m) z (m) Ground (mibit (m) L35g 985.712 38005 82.00 82.00 973.78 847.42 85.34 85.34 869.99 6229 86.96 96.89 889.96 801.14 87.53 87.53 817.94 772.38 90.07 90.07 779.63 755.64 91.44 91.44 735.78 739.6 91.44 91.44	e (14)
																	706.19 722.91 92.18 92.18 69.59 706.2 97.06 97.06 97.06 97.06 97.06 97.06 97.07 97.0	
_	Existing		34.5	0. 0.		23 6	۰			* x:	3	0 0	1				854.52 834.59 88.37 86.37 866.55 839.72 88.4 88.4 815.37 889.3 89.77 89.77 799.33 821.75 90.29 90.29 779.43 799.29 91.44 91.44	
	Farral P29164		345	0 0		13)0		•		0 32							768.8 780.67 91.44 91.44 765.31 768.48 91.44 91.44	
J	Partel P19184		34.5	e: (6)		13 0		0		0 32 0 32		0 0					812.67 724.95 92.42 92.42 1110.43 551.06 84.99 84.98 794.61 715.1 93.23 92.23 90.14 463.02 126.91 126.91	
	Sound Lavels Name	Ю тура	Oktova Spectrum	Lan)														
	Front End Lauter ICSM	ROM/G LW		(08) 31.5 63 0 0	125 250 0 0	500 1000 1165 0	2000 D	4000 e	000 A 0 113	Source Bn 116.5								
	Champ Truck RCNM Emportur Emplor	RCN946 LW		9 120 0 17L2	117 111 119.7 120.2	111 111 122.2 120.2	109	107	0 113 103 11 7.2 124	6 123.1								
	Occavitor loading Bucket/Tractor	ML3 LW ML8 LW		0 95.1 0 114.7	90.1 H9.1 115,7 113,7	89.1 85.1 111.7 109.7	81.1	76.1 7	7.2 124 70.1 90 4.7 115	4 98.1								
	Rock Crusher Screens	ML11 LW ML12 LW		8 0	0 0	121.8 U	0	0	0 118 0 122	6 121.8								
	Sumit Table							•										
	Receiver Name	Land C	Use Limiting Value Day Night	rel. Ands Station D		r te/o Noise Control kry Night	Day Nig	ght Day	olse Control Night	Exceeding Day Night	passive N	с						
	R1		dB(A) dB(A)	m m	420.98 -2.94	39.3	86 (A)Bb	(A) dB(A) 39.3	dB(A)	dB(A) dB(A)	dB(A)							
	R2 R3 R4		0	0 352 0 309	334.98 2.54 157.32 9.31	38.2 38.2 39.4 39.4	38.2 39.4	38.2 99.4	0	0-	2							
	R5 R6			0 ES 0 61	149.86 6.63 157.34 5.05	39.1 39.1 39.8 39.8	39.1 39.8	39.1 39.8	0	0-	8							
	R7 R8			8 0 9 280	107.45 -7.79 169.85 -14.1 202.84 -15.16	52.1 52.1 53.3 53.3	52.1 53.3	52.1 53.3	0	0-	ž.							
	R9 R10			⊈ 345 ⊕ 345	202.84 -15.16 68.37 -6.48 47.88 -4.86	64.7 64.7 65.8 65.8 64.3 64.3	64.7 65.8 64.3	64.7 65.8 64.3	0	0-	8							
	R11 R12		0	0 345 0 250	179.74 3.55 312.01 -9.59	53.8 53.8 43.8 43.8	53.8 45.8	33.8 43.8	D	0-	8							
	Case: Future Percel F19164 - Nobe Control					120	*****		-		**							
	Receiver																	
	Nems	м. 🐞	Dwy Night (dBA) (dBA)			uto Nolsa Type	Height	Courdle X	у	30								
	R1		39,3	9.3	BA)	Total	(m) 1.5 r		(m) .67 478.2	(m) 5 97.29								
	R2 R3 R4		39.4	8.2 0 9.4 0	0	Total	15 r 15 r	632		5 101.35								
	nn nn		39.1	39 0		Total	15 r	670	.92 902.	97.BS								

RS			39.8	39.8		1120			Total	15 г		688 93	2.95 95.		
96				51.9	0	0		•	Total	15 r		912 107			
87				524				•							
					U				Total	L5 r		6.42 1036			
95				56,7	0	0		•	Total	1.5 r			1.73 71.		
49 ALO				58.1	0	0		•	Total	1.5 r			5.99 78		
				55.8	0	9		•	Total :	1.5 r			1.42 aD.		
911				53.1	0	0			Total	15 r			7.39 88.		
512			43.8	43.8	0	0		•	Total	1.5 r	108	4.05 20	5.67 117.	32	
Industriane															
lame	M	100	ral Height Slope	Top	Width										
			(m)	L:00 (m)		(m) Y	(m)	z (m)	Ground (m)						
Berm			3.66	0.5	1	1118.6L	490.09	87.03	87.03						
						1127.98	748.19	71.51	71.51						
Barm			4.63	0.5	1	1124.65	745.36	71.81							
						1171.33	782.19	70.77							
						1020.58	845.93	75,83							
						930.98	865.77	83.81							
louit Table															
		tanding	Limiting Value	146	200			I r w/o Mol	se Control o	L reg.	lemf	Nobe Contro	ol Excuedin		passive N
incel/ear				Stat		fitanie i		Day			ght Day	Night	Day	Night	pauron
			Day Night												
	0		Day Night								seas contain				MOTAL
lame	0		Day Night dB(A) dB(A)	200				(A)dto	CB(A)	m(h) di	ICAL ORIAL	dB(A)	dB(A)	dB(A)	dB A
lame			(A) dB(A)	. **	332	420.58	-254	33.3	(B)(A)	19.3 EEE	18.3	dB(A)	dB[A]	dB(A)	* /*/
Alame 11. 12.			dB(A) dB(A)	0	352 352	#20 88 334.98	-2.54 2.54	88(A) 88.3 38.2	#8(A) 89.3 38.2	M(A) at 19-3 38,2	38.2	dB(A)	dB(A)	dB(A)	
NA			(A) dB(A)	. **	352 352 309	334.98 157.32	2.54 9.31	88.3 38.2 39.4	#8(A) 89.3 38.2 39.4	38,2 39,4	38.2 39.4	dB(A)	dB[A]	dB(A)	
Arme 11. 12. 13.	o		dB(A) dB(A)		352 352 309 85	334.98 157.32 149.86	2.54 9.31 6.63	38.2 38.2 39.4 39.1	38.2 39.4 39	38,2 39,4 39,1	38.2 39.4 39	dB(A)	0. 0. 0. 0.	dB(A)	i
Hame 11.1 12.1 13.3 14.5 15.5	10		dB(A) dB(A)		352 352 309 85 61	334.98 157.32 149.86 157.34	2.54 9.31 6.63 5.05	38.2 39.4 39.1 39.8	38.2 39.4 39.8 39.8	38,2 39,4 39,1 39,8	38.2 39.4 39 39.8	dB(A)	dB[A]	dB(A)	
lame 11 12 13 14 15 15	•		dB(A) dB(A)		352 352 309 85 61 0	334.98 157.32 149.86 157.34 107.45	2.54 9.31 6.63 5.05 -7.79	38.3 38.2 39.4 39.1 39.8 51.9	38.2 39.4 39.8 39.8 51.9	38,2 39,4 39,1 39,8 51,9	38.2 39.4 39 39.8 51.9	dB(A)	dB(A)	dB(A)	
anna 1 2 3 4 5 6 6	•		D D D D D D D D D D D D D D D D D D D		352 352 309 85 61 0	334.98 157.32 149.86 157.34 107.45 169.85	2.54 9.31 6.63 5.05 -7.79 -14.1	38.3 38.2 39.4 39.1 39.8 51.9 52.4	38.2 39.4 39.8 39.8 51.9 52.4	38,2 39,4 39,1 39,8 51,9 52,4	38.2 39.4 39.3 39.8 51.9 52.4	dB(A)	dB(A)	dB(A)	
tarne 1, 2, 3, 4, 5, 6, 7, 8,	•		dB(A) dB(A)		352 352 309 85 61 0	334.98 157.32 149.86 157.34 107.45 169.85 202.84	2.54 9.31 6.63 5.05 -7.79 -14.1	39.4 39.4 39.1 39.8 51.9 52.4 56.7	38.2 39.4 39.8 39.8 51.9 52.4 56.7	38.2 39.4 39.1 39.8 51.9 52.4 56.7	38.2 39.4 39 39.8 51.9 52.4 56.7	d8(A)	dB[A]	dB(A)	
Name Name Name Name Name Name Name Name	•		dB(A) dB(A)		352 352 308 85 61 0 0 280 345	334.98 157.32 149.85 157.34 107.45 169.85 202.84 68.37	2.54 9.31 6.63 5.05 -7.79 -14.1 -15.16 -6.48	38.2 39.4 39.1 39.8 51.9 52.4 56.7 58.1	38.2 39.4 39.8 39.8 51.9 52.4 56.7 58.1	38,2 39,4 39,1 39,8 51,9 52,4 56,7 58,1	98.3 28.2 39.4 39 39.8 51.9 52.4 56.7 58.1	d8(A)	dB[A]	dB(A)	
Name Name Name Name Name Name Name Name			dB(A) dB(A)		352 352 308 85 61 0 0 280 345 345	334.98 157.32 149.85 157.34 107.45 169.85 202.84 68.37 47.88	2.54 9.31 6.63 5.05 -7.79 -14.1 -15.16 -6.48 -4.86	38.2 39.4 39.1 39.8 51.9 52.4 56.7 58.1	38.2 39.4 39.8 51.9 52.4 56.7 58.1 55.8	38,2 39,4 39,1 39,8 51,9 52,4 56,7 58,1 55,8	38.2 39.4 39.8 51.9 52.4 56.7 58.1	dB(A)	dB[A]	dB(A)	
PersonNew Nation R1 R2 R3 R6			dB(A) dB(A)		352 352 308 85 61 0 0 280 345	334.98 157.32 149.85 157.34 107.45 169.85 202.84 68.37	2.54 9.31 6.63 5.05 -7.79 -14.1 -15.16 -6.48	38.2 39.4 39.1 39.8 51.9 52.4 56.7 58.1	38.2 39.4 39 39.8 51.9 52.4 56.7 58.1 55.8	38,2 39,4 39,1 39,8 51,9 52,4 56,7 58,1	98.3 28.2 39.4 39 39.8 51.9 52.4 56.7 58.1	d8(A)	dB[A]	dB(A)	

PROJECT DRAWINGS

X Affraved MRO Extension

Lake Erie Trucking (South Fidalgo)

Map of area with existing MRO, center, in crosshatch. MRO is expanded to entirety of parcels P19158, P90028, P19165, and P19164 highlighted in light orange.

Attachment 3

Pico大

Aerial Enotography Report

Head Road ENTRANCE

Permit 70-0 12835

WILLIAM W WOODING LAKE ERIE PIT

Inspected: 02/27/2013 by E. Newby Legend

59

56 110

220

333 44

Fant W

field disturbed area

permit boundary

reclaimed area

X Approved MRO Extension

Lake Erie Trucking (South Fidalgo)

Map of area with existing MRO, center, in crosshatch. MRO is expanded to entirety of parcels P19158, P90028, P19165, and P19164 highlighted in light orange.

BILL WOODING & Pit 1, LLC PARCEL OWNERSHIP

Current Mine Operation & Permits

- (1) P19108 3.29 acres Lake Erie Pit DNR Permit # 70-012635
- (2) P19162 4.49 acres Lake Erie Pit DNR Permit # 70-012635
- (3) P19165 <u>10.0</u> acres Lake Erie Pit DNR Permit # 70-012635 Total 17.78 acres

Over-Mining & Additional Expansion

- (4) P19155 5.25 acres Expansion area of existing mining permit
- (5) P19158 8.97 acres Expansion area of existing mining permit
- (6) P90028 .37 acres Expansion area of existing mining permit Total 14.59 acres

Additional Expansion

- (7) P19161 4.27 acres Additional expansion of existing mining permit (Note Eric Wooding part owner with Pit 1, LLC)
- (8) P19164 16.86 acres Additional expansion of existing mining permit

Total Acres: 53.5 acres

Land Use All 8 Parcels: Mining Activities & Related Services

Zoning All 8 Parcels: RRc-NRL

CAT 980C LOADER

TD 844

CAT 980B

N

POWER SCREEN-MII CHIEFTAN

HITACHI EX 310 Excavator

KENWORTH W900 Dump Trucks (Cummius Ex

ATTACHMENT E

LAKE ERIE PIT EXPANSION AIR QUALITY MEMORANDUM

MAUL FOSTER ALONGI